Непозиционные системы счисления примеры. Системы счисления. Перевод из десятичной системы счисления в другие

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

    при написании большого числа необходимо использовать большое количество палочек;

    возможно легко ошибиться при нанесении палочек.

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Т.В. Сарапулова, И.Е. Трофимов

НЕПОЗИЦИОННЫЕ И СМЕШАННЫЕ
СИСТЕМЫ СЧИСЛЕНИЯ

направления 230700.62 «Прикладная информатика» в качестве методических указаний для самостоятельной работы
по дисциплине «Информационные системы и технологии»

Кемерово 2012


Рецензенты:

1. Прокопенко Евгения Викторовна, кандидат физико-математических наук, доцент кафедры прикладных информационных технологий.

2. Соколов Игорь Александрович, кандидат технических наук, доцент, заведующий кафедрой прикладных информационных технологий, председатель УМК направления 230700.62 «Прикладная информатика».

Сарапулова Татьяна Викторовна, Трофимов Иван Евгеньевич. Непозиционные и смешанные системы счисления: метод. указания для самостоятельной работы по дисциплине «Информационные системы и технологии» [электронный ресурс] : для студентов направления подготовки бакалавров 230700.62 «Прикладная информатика»/ Т. В. Сарапулова, И. Е. Трофимов. – Электрон. дан. – Кемерово: КузГТУ, 2012. – 1 электрон. опт. диск (CD-ROM) ; зв. ; цв. ; 12 см. – Систем. требования: ОЗУ 64 Мб; Windows XP/Vista/7 ; (CD-ROM-дисковод). – Загл. с экрана.

Методические указания предназначены для самостоятельного изучения непозиционных и смешанных систем счисления. В состав указаний входят теоретическая база и контрольные вопросы.

Ó Сарапулова Т.В, Трофимов И.Е.


ВВЕДЕНИЕ.. 4

1. НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.. 5

1.1. Римская система счисления. 6

1.2. Система остаточных классов (СОК) 6

1.3. Система счисления Штерна-Броко. 8

2. СМЕШАННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.. 9

2.1. Система счисления майя. 10

2.2. Факториальная система счисления. 10

2.3. Фибоначчиева система счисления. 11


Целью данной самостоятельной работы является изучение непозиционных и смешанных систем счисления.

ВВЕДЕНИЕ

Одним из обязательных требований к специалисту в области информационных технологий является знание принципов работы с числами. На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая большее число предметов, объединялась в понятие «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки.

Проведём границу между числом и цифрой. Число – это некоторая абстрактная сущность для описания количества. Цифры – это знаки, используемые для записи чисел. Цифры бывают разные, самыми распространёнными являются арабские цифры, представляемые известными нам знаками от нуля (0) до девяти (9); менее распространены римские цифры, мы их можем иногда встретить на циферблате часов или в обозначении века (XIX век).

Итак, запомним: число это некая абстрактная мера количества , цифра это знак (рисунок) для записи числа .

Всё множество способов записи чисел с помощью цифр можно разделить на три части:

1. позиционные системы счисления;

2. смешанные системы счисления;

3. непозиционные системы счисления.

Денежные знаки – это яркий пример смешанной системы счисления. Сейчас в России используются монеты и купюры следующих номиналов: 1 коп., 5 коп., 10 коп., 50 коп., 1 руб., 2 руб., 5 руб., 10 руб., 50 руб., 100 руб., 500 руб., 1000 руб. и 5000 руб. Чтобы получить некоторую сумму в рублях, нам нужно использовать определенное количество денежных знаков различного достоинства. Предположим, что мы покупаем пылесос, который стоит 6379 руб. Чтобы расплатиться, нам потребуется шесть купюр по тысяче рублей, три купюры по сто рублей, одна пятидесятирублёвая купюра, две десятки, одна пятирублёвая монета и две монеты по два рубля. Если мы запишем количество купюр или монет начиная с 1000 руб. и заканчивая одной копейкой, заменяя нулями пропущенные номиналы, то мы получим число, представленное в смешанной системе счисления; в нашем случае – 603121200000.

В непозиционной же системе счисления величина числа не зависит от положения цифры в представлении числа. Ярким примером непозиционной системы счисления является римская система. Не смотря на свой почтенный возраст, данная система до сих пор используется, хотя и не является общеупотребимой.

НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр.

С глубокой древности люди повсеместно использовали непозиционные системы счисления. Для подсчета животных, населения, запасов использовались различные буквы, пиктограммы и прочие геометрические фигуры. Со временем непозиционные системы стали менее популярны и в современном мире мы встречаем типичного представителя непозиционных систем – римскую систему счисления, уже скорее как экзотическое письмо, нежели реально действующую систему. Причиной отказа от непозиционных систем счисления стало появление позиционных систем, давших возможность использовать значительно меньшие цифровые алфавиты для обозначения даже очень больших чисел и, что еще важнее, обеспечивающих простое выполнение арифметических операций над числами.

Римская система счисления

Каноническим примером фактически непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы:

I обозначает 1, V – 5, X – 10, L – 50, C – 100, D – 500, M – 1000.

Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе.

Заметьте, что символ нуля в данной системе счисления, как и в других непозиционных системах, отсутствует за ненадобностью.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явно прослеживаются следы пятеричной системы счисления.

На самом деле, римская система не является полностью непозиционной , так как меньшая цифра, идущая перед большей, вычитается из неё, например:

VI = 6, т.е. 5 + 1, в то время как IV = 4, т.е. 5 – 1;

XL = 40, т.е. 50 – 10, в то время как LX = 60, т.е. 50 + 10.

Подряд одна и та же цифра в римской системе ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так: I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII.

Другие же числа записываются, например, как: XXVIII = 28; XXXIX = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Задавшись вопросом о том, сколько же чисел можно записать в римской системе, мы быстро обнаружим, что их диапазон простирается от 1 (I) до 3999 (MMMCMXCIX). Столь узкий диапазон чисел серьезно ограничивает применение системы в современной жизни, где счет идет на миллионы.

Сейчас римской системой счисления пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д.


Похожая информация.


Системы счисления - что это? Даже не зная ответа на этот вопрос, каждый из нас поневоле в своей жизни пользуется системами счисления и не подозревает об этом. Именно так, во множественном числе! То есть не одной, а несколькими. Прежде чем привести примеры непозиционных систем счисления, давайте разберемся в этом вопросе, поговорим и о позиционных системах тоже.

Потребность в счете

С древности люди имели потребность в счете, то есть интуитивно осознавали, что нужно каким-то образом выразить количественное видение вещей и событий. Мозг подсказывал, что необходимо использовать предметы для счета. Наиболее удобными всегда были пальцы на руках, и это понятно, ведь они всегда в наличии (за редкими исключениями).

Вот и приходилось древним представителям рода человеческого загибать пальцы в прямом смысле - обозначать количество убитых мамонтов, например. Названий у таких элементов счета еще не было, а лишь визуальная картинка, сопоставление.

Современные позиционные системы счисления

Система счисления - это метод (способ) преставления количественных значений и величин посредством определенных знаков (символов или букв).

Необходимо понимать, что такое позиционность и непозиционность в счете, прежде чем приводить примеры непозиционных систем счисления. Позиционных систем счисления множество. Сейчас используют в различных областях знаний следующие: двоичную (включает только два значимых элемента: 0 и 1), шестеричную (количество знаков - 6), восьмеричную (знаков - 8), двенадцатеричную (двенадцать знаков), шестнадцатеричную (включает шестнадцать знаков). Причем каждый ряд знаков в системах начинается с нуля. основаны на использовании двоичных кодов - двоичной позиционной системы счисления.

Десятичная система счисления

Позиционностью считается наличие в различной степени значимых позиций, на которых располагаются знаки числа. Лучше всего это можно продемонстрировать на примере десятичной системы счисления. Ведь именно ею мы привыкли пользоваться с самого детства. Знаков в этой системе десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Возьмем число 327. В нем имеются три знака: 3, 2, 7. Каждый из них расположен на своей позиции (месте). Семерка занимает позицию, отведенную под единичные значения (единицы), двойка - десятки, а тройка - сотни. Так как число трехзначное, следовательно, позиций в нем всего три.

Исходя из вышесказанного, такое трехзначное десятичное число можно описать следующим образом: три сотни, два десятка и семь единиц. Причем значимость (важность) позиций отсчитывается слева направо, от слабой позиции (единицы) к более сильной (сотни).

Нам очень удобно себя чувствовать в десятичной позиционной системе счисления. У нас на руках десять пальцев, на ногах - также. Пять плюс пять - так, благодаря пальцам, мы с детства легко представляем себе десяток. Вот почему бывает легко детям учить таблицу умножения на пять и на десять. А еще так просто научиться считать денежные банкноты, которые чаще всего кратны (то есть делятся без остатка) на пять и на десять.

Другие позиционные системы счисления

К удивлению многих, следует сказать, что не только в десятичной системе счета наш мозг привык делать некие расчеты. До сих пор человечество пользуется шестеричной и двенадцатеричной системами счисления. То есть в такой системе существует только шесть знаков (в шестеричной): 0, 1, 2, 3, 4, 5. В двенадцатеричной их двенадцать: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, где А - обозначает число 10, В - число 11 (так как знак должен быть один).

Посудите сами. Мы считаем время шестерками, не так ли? Один час - шестьдесят минут (шесть десятков), одни сутки - это двадцать четыре часа (два раза по двенадцать), год - двенадцать месяцев и так далее... Все временные интервалы легко укладываются в шести- и двенадцатеричные ряды. Но мы настолько к этому привыкли, что даже не задумываемся при отсчете времени.

Непозиционные системы счисления. Унарная

Необходимо определиться в том, что это такое - непозиционная система счисления. Это такая знаковая система, в которой нет позиций для знаков числа, или принцип "прочтения" числа от позиции не зависит. В ней также существуют свои правила записи или вычислений.

Приведем примеры непозиционных систем счисления. Вернемся к древности. Люди нуждались в счете и придумали наиболее простое изобретение - узелки. Непозиционной системой счисления является узелковая. Один предмет (мешок риса, бык, и пр.) отсчитывали, например, при покупке или продаже и завязывали узелок на веревочке.

В итоге на веревке получалось столько узелков, сколько мешков риса куплено (как пример). Но также это могли быть насечки на деревянной палочке, на каменной плите и т.д. Такая система счисления стала называться узелковой. У нее существует второе название - унарная, или единичная ("уно" на латыни означает "один").

Становится очевидным, что данная система счисления - непозиционная. Ведь о каких позициях может идти речь, когда она (позиция) всего одна! Как ни странно, в некоторых уголках Земли до сих пор в ходу унарная непозиционная система счисления.

Также к непозиционным системам счисления относят:

  • римскую (для написания чисел используются буквы - латинские символы);
  • древнеегипетскую (похожа на римскую, также использовались символы);
  • алфавитную (использовались буквы алфавита);
  • вавилонскую (клинопись - использовали прямой и превернутый "клин");
  • греческую (также относят к алфавитной).

Римская система счисления

Древняя римская империя, а также ее наука, была очень прогрессивной. Римляне дали миру множество полезных изобретений науки и искусства, в том числе свою систему счета. Две сотни лет назад римские числа использовали для обозначения сумм в деловых документах (таким образом избегали подделки).

Пример непозиционной системы счисления, она известна нам сейчас. Также римская система активно используется, но не для математических расчетов, а для узко направленных действий. Например, с помощью римских чисел принято обозначать исторические даты, века, номера томов, разделов и глав в книжных изданиях. Часто используют римские знаки для оформления циферблатов часов. А также римская нумерация является примером непозиционной системы счисления.

Римляне обозначали цифры буквами латиницы. Причем числа они записывали по определенным правилам. Существует перечень ключевых символов в римской системе счисления, с помощью них записывались все числа без исключения.

Правила составления чисел

Требуемое число получалось путем сложения знаков (букв латиницы) и вычисления их суммы. Рассмотрим, как символически записываются знаки в римской системе и как нужно их "считывать". Перечислим основные законы формирования чисел в римской непозиционной системе счисления.

  1. Число четыре - IV, состоит из двух знаков (I, V - один и пять). Оно получается путем вычитания меньшего знака из большего, если он стоит левее. Когда меньший знак расположен справа, необходимо складывать, тогда получится число шесть - VI.
  2. Необходимо складывать два одинаковых знака, стоящих рядом. Например: СС - это 200 (С - 100), или ХХ - 20.
  3. Если первый знак числа меньше второго, то третьим в этом ряду может быть символ, значение которого еще меньше первого. Чтобы не запутаться, приведем пример: CDX - 410 (в десятичной).
  4. Некоторые крупные числа могут быть представлены разными способами, что является одним из минусов римской системы счета. Приведем примеры: MVM (римская система) = 1000 + (1000 - 5) = 1995 (десятичная система) или MDVD = 1000 + 500 + (500 - 5) = 1995. И это еще не все способы.

Приемы арифметики

Непозиционная система счисления - это иногда сложный набор правил формирования чисел, их обработки (действий над ними). Арифметические операции в непозиционных системах счисления - дело непростое для современных людей. Не завидуем древнеримским математикам!

Пример сложения. Попробуем сложить два числа: XIX + XXVI = XXXV, это задание выполняется в два действия:

  1. Первое - берем и складываем меньшие доли чисел: IX + VI = XV (I после V и I перед X "уничтожают" друг друга).
  2. Второе - складываем большие доли двух чисел: X + XX = XXX.

Вычитание выполняется несколько сложнее. Уменьшаемое число требуется разбить на составные элементы, а после этого в уменьшаемом и вычитаемом сократить дублируемые символы. Из числа 500 вычтем 263:

D - CCLXIII = CCCCLXXXXVIIIII - CCLXIII = CCXXXVII.

Умножение римских чисел. Кстати, необходимо упомянуть, что у римлян не имелось знаков арифметичеких операций, они просто словами обозначали их.

Множимое число умножать нужно было на каждый отдельный символ множителя, получалось несколько произведений, которые необходимо было сложить. Таким способом производят умножение многочленов.

Что касается деления, то этот процесс в римской системе счисления был и остается наиболее сложным. Тут применялись древние римские счеты - абак. Чтобы работать с ним людей специально обучали (и не всякому человеку удавалось такую науку освоить).

О недостатках непозиционных систем

Как было сказано выше, в непозиционных системах счисления существуют свои недостатки, неудобства в использовании. Унарная достаточна проста для простого счета, но для арифметики и сложных вычислений она не годится вовсе.

В римской отсутствуют единые правила формирования больших чисел и возникает путаница, а также в ней очень сложно производить вычисления. Кроме того, самым которое могли записать древние римляне с помощью своего метода, было 100000.

Непозиционные системы счисления

Люди научились считать очень давно. В последствии появилась потребность в записи чисел. Количество предметов изображалось нанесением черточек, засечек на какой-нибудь твердой поверхности.Чтобы два человека могли точно сохранить некоторую числовую информацию, они брали деревянную бирку, делали на ней нужное число зарубок, а потом раскалывали бирку пополам. Каждый уносил свою половинку и хранил ее. Этот прием позволял избегать спорных ситуаций. Археологами найдены такие записи при раскопках. Они относятся к 10-11 тысячелетию до н.э.
Ученые назвали такую систему записи чисел единичной (унарной) , так как любое число в ней образуется путем повторения одного знака, символизирующего единицу.

Позднее эти значки стали объединять в группы по 3, 5 и 10 палочек. Поэтому возникали более удобные системы счисления.

Примерно в третьем тысячелетии до нашей эры египтяне придумали свою числовую систему, в которой для обозначения ключевых чисел использовались специальные значки - иероглифы. Каждый такой иероглиф мог повторяться не более 9 раз.Такая система счисления называется древнеегипетская десятичная непозиционная система счисления

Примером непозиционной системы счисления, которая сохранилась до наших дней, может служить система счисления, применявшаяся более двух с половиной тысяч лет назад в Древнем Риме. Она называется римская система счисления .

В основе лежат знаки I(1), V(5), X(10), L(50), C(100), D(500), M(1000).

Римскими цифрами пользовались очень долго, сегодня они используются в основном для наименования знаменательных дат, томов, разделов и глав в книгах.

Чтобы записать число, римляне использовали не только сложение, но и вычитание.
Правила составления чисел в римской системе счисления:

  1. Идущие подряд несколько одинаковых цифр складываются (группа первого вида).
  2. Если слева от большей цифры стоит меньшая, то от значения большей отнимается значение меньшей цифры(группа второго вида).
  3. Значения групп и цифр, не вошедших в группы первого и второго вида складываются.

В старину на Руси широко применялись системы счисления, напоминающие римскую. Они назывались ясачные . С их помощью сборщики податей заполняли квитанции об уплате подати (ясака) и делали записи в податной тетради.

«Русская книга податей»

Непозиционные системы счисления имеют ряд существенных недостатков:

  1. Существует постоянная потребность введения новых знаков для записи больших чисел.
  2. Невозможно представлять дробные и отрицательные числа.
  3. Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения. В частности, у всех народов наряду с системами счисления были способы пальцевого счета, а у греков была счетная доска абак - что-то наподобие наших счетов.

Но мы до сих пор пользуемся элементами непозиционной системысчисления в обыденной речи, в частности, мы говорим сто, а не десять десятков,тысяча, миллион, миллиард, триллион.

Система счисления (нумерация лат. numeratio) - метод обозначения чисел посредством знаков - цифр, или слов. Система обозначения, основанная на цифрах - письменная нумерация. Система обозначения, основанная на словах - словесная нумерация.

Системы счисления разделяют на позиционные и непозиционные .

Различие позиционных систем счисления от непозиционных состоит в том, что значение цифр в позиционной системе зависит от позиции в числе, а в непозиционной - не зависит. Примеры позиционных систем счисления: десятичная система счисления, основанная на арабских цифрах; система Майя (20-ричная). Примеры непозиционных систем счисления - римская, старая и новая греческая, славянская.

Позиционные и многие непозиционные системы счисления имеют так называемое основание. Основание также определяет деления чисел на порядки. Числа, меньшие основания, называются числами первого порядка, до второй степени основания (n·n) - числами второго и так далее. Числа, соотносящиеся на основание, считаются различающимися на один порядок.

Системы счисления, обладающие основанием, имеют регулярную структуру названий - числа, отличающиеся на порядок, образуются подобным образом. Для позиционных систем счисления основание означает, во сколько раз изменится значение цифры при смещении на одну позицию - 3 и 30 в десятичной системе отличаются в десять раз. Непозиционные системы счисления обычно включают знаки для чисел, меньших основания и помноженных на целую степень основания, например римская - I=1, V=5, X=10, L=50, C=100 - цифры I к X и к C, относятся как основание системы счисления, аналогично относятся V и L.

Системы счисления, также различающиеся тем, как образуются числа внутри порядка. Один очевидный способ образования - повторение символа единицы необходимое количество раз - он используется во многих древних системах - египетской, старой греческой, римской и других. Такой подход обеспечивает использование достаточно малое количество различных символов, но является весьма расточительным. Нередким в таких системах было использование дополнительного основания, меньшего основного. Числа, одного порядка формировались аналогично с использованием дополнительного основания. Это позволяло значительно сократить количество повторений. Дополнительными основаниями часто служили 5 и 10. Так, отдельный символ для обозначения 5 есть в старой греческой и римской нумерации - Γ и V, а также у майя 5 в качестве промежуточного основания связан со счётом по пальцам, и обозначал, что закончились пальцы на руке (или ноге). Промежуточное основание 10 использовалось в древневавилонской клинописной 60 системе счисления.

Другой способ, использовавшийся в более новых - использование различных символов. Такой подход используется широко используемой десятичной системе счисления – цифры 1, 2, 3. 4, 5, 6, 7, 8, 9, 0. Такой же подход применялся в новогреческой и заимствованной от неё древнерусской. В них в качестве цифр использовались буквы - в новой греческой это греческий алфавит , в древнерусской – кириллица или глаголица, причём цифровые значения букв кириллица полностью соответствовали таковым в греческом, у глаголицы отличались. Эти системы использовали 27 букв со значениями: от 1 до 9 через один, 10 по 90 через десяток, 100 по 900 - через сотню.

Непозиционные системы счисления

Непозиционные системы счисления появились исторически первыми. В этих системах значение каждого цифрового символа постоянно и не зависит от его положения. Простейшим случаем непозиционной системы является единичная, для которой для обозначения чисел используется единственный символ, как правило это черта, иногда точка, которых всегда ставится количество, соответствующее обозначаемому числу:

3 - |||, и т. д.

Таким образом, этот единственный символ имеет значение единицы, из которой последовательным сложением получается необходимое число:

Модификацией единичной системы является система с основанием, в которой есть символы не только для обозначения единицы, но и для степеней основания. Например, если за основание взято число 5, то будут дополнительные символы для обозначения 5, 25, 125 и так далее.

Примером такой системы с основанием 10 является древнеегипетская, возникшая во второй половине третьего тысячелетия до новой эры. В этой системе имелись следующие иероглифы:

шест - единицы,

дуга - десятки,

пальмовый лист - сотни,

цветок лотоса - тысячи.

Числа получались простым сложением, порядок следования мог быть любым. Так, для обозначения, например, числа 3815, рисовали три цветка лотоса, восемь пальмовых листов, одну дугу и пять шестов. Более сложные системы с дополнительными знаками - старая греческая, римская. Римская также использует элемент позиционной системы - большая цифра, стоящая перед меньшей, прибавляется, меньшая перед большей - вычитается: IV = 4, но VI = 6, этот метод, правда, применяется исключительно для обозначения чисел 4, 9, 40, 90, 400, 900, 4000, и производных их сложением.

Новогреческая и древнерусская системы использовали в качестве цифр 27 букв алфавита, где ими обозначалось каждое число от 1 до 9, а также десятки и сотни. Такой подход обеспечил возможность записывать числа от 1 до 999 без повторений цифр.

В старорусской системе для обозначения больших чисел использовались специальные обрамления вокруг цифр.

В качестве словесной системы нумерации до сих пор практически везде используется непозиционная. Словесные системы нумерации сильно привязаны к языку, и общие их элементы в основном относятся к общим принципам и названиям больших чисел (триллион и выше). Общие принципы, положенные в основу современных словесных нумераций предполагают формирование обозначения посредством сложения и умножения значений уникальных названий.

Позиционные системы счисления

В позиционных системах счисления важную роль играет порядок следования цифр. Каждая цифра в позиционной записи имеет свою позицию, которая определяет её численное значение. Позиции цифр носят название разрядов.

Для позиционной с. с. Выбирается основанием некоторое натуральное число большее или равное двум. Любое неотрицательное целое число представляется как сумма степеней n с целыми коэффициентами в диапазоне от 0 до n-1. Эти коэффициенты записываются в виде цифр выбранной системы счисления.

Общая система счисления может быть определена, как такая группировка целых и дробных чисел, при которой каждое из них представляется формулой:

в которой n означает основание системы счисления, а символ ai - i -тую цифру записи числа, ai должно лежать в диапазоне от 0 доn-1. Индекс при цифре является номером разряда.

В информатике и вычислительной технике часто используются основания 2 (двоичная), 8 (восмеричная) и 16 (шестнадцатеричная). Двоичная система счисления связана с особенностями функционирования цифровых электронных схем , работающих с двумя состояниями, выражаемыми цифрами 0 и 1. Использование систем счисления с основаниями 8 и 16 связано с тем, что для удобства двоичные цифры группируются по 3 и 4 соответственно, что позволяет использовать более компактную запись. В шестнадцатеричной и других системах счисления с основанием больше десяти используют в качестве недостающих цифр буквы латинского алфавита: A - F.

Шестнадцатеричная система счисления используется для кодирования дискретного сигнала, потребителем которого является хорошо подготовленный пользователь – специалист в области информатики. В такой форме представляется содержимое любого файла, затребованное через интегрированные оболочки операционной системы, например, средствами Norton Commander в случае MS DOS. Используемые знаки для представления числа – десятичные цифры от 0 до 9 и буквы латинского алфавита – A, B, C, D, E, F.

Десятичная система счисления используется для кодирования дискретного сигнала, потребителем которого является так называемый конечный пользователь – неспециалист в области информатики (очевидно, что и любой человек может выступать в роли такого потребителя). Используемые знаки для представления числа – цифры от 0 до 9.

Соответствие между первыми несколькими натуральными числами всех трех систем счисления представлено в таблице перевода:

Десятичная

Двоичная система

Шестнадцатеричная система

Для различения систем счисления, в которых представлены числа, в обозначение двоичных и шестнадцатеричных чисел вводят дополнительные реквизиты:

для двоичных чисел – нижний индекс справа от числа в виде цифры 2 или букв В либо b (binary – двоичный), либо знак B или b справа от числа. Например, 1010002 = 101000b = 101000B = 101000B = 101000b;

для шестнадцатеричных чисел - нижний индекс справа от числа в виде числа 16 или букв H либо h (hexadecimal – шестнадцатеричный), либо знак H или h справа от числа. Например, 3AB16 = 3ABH= 3ABh = 3ABH = 3ABh.

Для перевода чисел из одной системы счисления в другую существуют определенные правила. Они различаются в зависимости от формата числа – целое или правильная дробь. Для вещественных чисел используется комбинация правил перевода для целого числа и правильной дроби.

Правила и примеры перевода из двоичной в десятичную систему счисления

Имеется следующая последовательность нулей и единиц: - всего 9 разрядов. Необходимо представить ее в десятичном виде. Для перевода в десятичную систему счисления запишем справа налево 9 степеней числа 2 (от 0 до 8 степени), все просто, каждое последующее число получается путем умножения предыдущего на 2:

Запишем под степенями наше двоичное число (слева направо, как есть):

Затем найдем сумму тех степеней двойки, под которыми стоят единицы:

256 + 32 + 4 + 1 = 293, это и есть результат перевода:

Итак, запишем правило перевода из двоичной системы счисления в десятичную:

Для перевода чисел из двоичной системы счисления в десятичную сосчитаем количество разрядов N и запишем степени двух от нулевой до N - 1 справа налево (помним, что каждая последующая степень получается умножением предыдушей на 2). Запишем под ними двоичное число и найдем сумму тех степеней, под которыми стоят единицы. Результатом будет десятичное число, представленное в виде суммы различных степеней числа 2.