Какое значение имеет длина волны. Определяем, чему равна длина волны - формула. Как рассчитывается длина звуковой волны - формула Как вычислить среднюю длину волны

Абсолютно все в этом мире происходит с какой-либо скоростью . Тела не перемещаются моментально, для этого требуется время. Не являются исключением и волны, в какой бы среде они не распространялись.

Скорость распространения волны

Если вы бросите камень в воду озера, то возникшие волны дойдут до берега не сразу. Для продвижения волн на некоторое расстояние необходимо время, следовательно, можно говорить о скорости распространения волн.

Скорость волны зависит от свойств среды, в которой она распространяется. При переходе из одной среды в другую, скорость волн меняется. Например, если вибрирующий железный лист засунуть концом в воду, то вода покроется рябью маленьких волн, однако скорость их распространения будет меньше, чем в железном листе. Это несложно проверить даже в домашних условиях. Только не порежьтесь о вибрирующий железный лист...

Длина волны

Существует еще одна важная характеристика это длина волны. Длина волны это такое расстояние, на которое распространяется волна за один период колебательных движений . Легче понять это графически.

Если зарисовать волну в виде рисунка или графика, то длиной волны будет являться расстояние между любыми ближайшими гребнями либо впадинами волны, либо между любыми другими ближайшими точками волны, находящимися в одинаковой фазе.

Так как длина волны это расстояние, пройденное ею, то и найти эту величину можно, как и любое другое расстояние, умножив скорость прохождения на единицу времени. Таким образом, длина волны связана со скоростью распространения волны прямо пропорционально. Найти длину волны можно по формуле:

где λ длина волны, v скорость волны, T период колебаний.

А учитывая, что период колебаний обратно пропорционален частоте этих же колебаний: T=1⁄υ, можно вывести связь скорости распространения волны с частотой колебаний :

v=λυ .

Частота колебаний в разных средах

Частота колебаний волн не меняется при переходе из одной среды в другую. Так, например, частота вынужденных колебаний совпадает с частотой колебаний источника. Частота колебаний не зависит от свойств среды распространений. При переходе из одной среды в другую меняется лишь длина волны и скорость ее распространения.

Эти формулы справедливы как для поперечных, так и для продольных волн. При распространении продольных волн длина волны будет расстоянием между двумя ближайшими точками с одинаковым растяжением или сжатием. Она также будет совпадать с расстоянием, пройденным волной за один период колебаний, поэтому формулы будут полностью подходить и в этом случае.

Важный физический параметр, необходимый для решения многих задач акустики и радиоэлектроники. Ее можно высчитать несколькими способами, в зависимости от того, какие параметры заданы. Удобнее всего это делать, зная частоту или период и скорость распространения.

Формулы

Основная формула, которая отвечает на вопрос о том, как найти длину волны через частоту, представлена ниже:

Здесь l - длина волны в метрах, v - скорость ее распространения в м/c, u - линейная частота в герцах.

Поскольку частота связана с периодом обратным соотношением, предыдущее выражение можно записать иначе:

Т - период колебаний в секундах.

Можно выразить этот параметр через циклическую частоту и фазовую скорость:

l = 2pi*v/w

В этом выражении w - циклическая частота, выраженная в радианах за секунду.

Частота волны через длину, как можно заметить из предыдущего выражения, находится следующим образом:

Рассмотрим электромагнитную волну, которая распространяется в веществе с n. Тогда частота волны через длину выражается следующим отношением:

Если она распространяется в вакууме, то n = 1, и выражение приобретает следущий вид:

В последней формуле частота волны через длину выражается с помощью константы с - скорости света в вакууме, с = 300000 км/c.

При проведении расчетов и проектировании телевизионных радиоприемников и передатчиков, медицинского и оптического оборудования, средств навигации, а также в других отраслях техники и науки возникает необходимость вычислять длину волн.

Длина волны - это расстояние между двумя точками (любыми), которые синфазно колеблются, но обычно за понятие «длина волны» принимают расстояние между гребнями этой волны. Измеряется величина длины волны в единицах расстояния, например в метрах. На вопрос, как найти длину волны, ответит наша статья.

Длина волны обратно пропорциональна частоте волны. Мы знаем, что единица измерения частоты - это герц (Гц). Например, частота тока домашних электросетей в России - 50Гц. Но для передачи радиосигналов и телевизионных сигналов используется более высокая частота.

Определение длины волны

Например, Вам известно, что какая-то радиостанция работает на частоте 1,7МГц, а шкала радиоприемника, который у Вас, отградуирована в метрах. Вам необходимо найти волну, на которой Вы будете слушать эту радиостанцию. Для того, чтобы ответить на вопрос о том, как определить длину волны, для начала нужно запомнить, чему равны сокращения некоторых величин:

  • «к» - «кило», 103=1000
  • «М» - «мега», 106=1000000

1. Необходимо перевести МГц в Гц. Мы получим - 1,7МГц=1700000Гц;

2. Длину волны можно найти по формуле:

  • λ = c/v, где c - скорость света, v - частота излучения.

Скорость света в вакууме практически равна скорости света в воздухе. Электромагнитные волны и радиоволны, рентгеновское излучение распространяются со скоростью света. Итак, длина радиоволны частотой 1,7МГц равна:

300000000/1700000≈176,47м.

Какие бывают длины волн

Чем меньше длина волны, тем выше ее частота и наоборот, поэтому различают:

  • длинные волны (ДВ), которые лежат в диапазоне 1000м-10000м
  • средние волны (СВ), которые лежат в диапазоне 100м-1000м
  • короткие (КВ), которые лежат в диапазоне 10м-100м
  • ультракороткие (УКВ), которые лежат в диапазоне 10-6м-10м

Длинные волны могут распространяться до 2000км, потому что отражаются от поверхности земли.

Средние волны гасит поверхность планеты. Дальность распространения таких волн зависит от времени суток.

Короткие волны распространяются на огромные расстояния, отражаясь поочередно от ионосферы и от земли.

При распространении волн в разных средах их длина может меняться, при этом частота останется прежней. Это зависит от свойств среды распространения.

Свет играет важную роль в фотографии. Привычный всем солнечный свет имеет достаточно сложный спектральный состав.

Спектральный состав видимой части солнечного света характеризуется наличием монохроматических излучений, длина волны которых находится в пределах 400-720 нм, по другим данным 380-780 нм.

Иными словами солнечный свет может быть разложен на монохроматические составляющие. В тоже время монохроматические (или одноцветные) составляющие дневного света не могут быть выделены однозначно , а, ввиду непрерывности спектра, плавно переходят от одного цвета в другой.

Считается, что определённые цвета находятся в определённых пределах длин волн . Это иллюстрирует Таблица 1.

Длины световых волн

Таблица 1

Для фотографов представляет определённый интерес распределение длин волн по зонам спектра.

Всего выделяют три зоны спектра : Синюю (B lue), Зелёную (G reen) и Красную (R ed).

По первым буквам английских слов R ed (красный), G reen (зелёный), B lue (синий) получила название система представления цвета – RGB .

В RGB -системе работает множество устройств, связанных графической информацией, например, цифровые фотокамеры, дисплеи и т.п.

Длины волн монохроматических излучений, распределённых по зонам спектра, представлены в Таблице 2.

При работе с таблицами важно учесть непрерывный характер спектра . Именно непрерывный характер спектра приводит к расхождению, как ширины спектра видимого излучения, так и положение границ спектральных цветов.

Длины волн монохроматических излучений, распределённых по зонам спектра

Таблица 2

Что касается монохроматических цветов, то разные исследователи выделяют разное их количество! Принято считать от шести до восьми различных цветов спектра.

Шесть цветов спектра

Таблица 3

При выделении семи цветов спектра предлагается из диапазона синего 436-495 нм см.Таблицу 3 выделить две составляющие, одна из которых имеет синий (440-485 нм), другая – голубой (485-500 нм) цвет.

Семь цветов спектра

Таблица 4

Названия семи цветов спектра приведены в Таблице 5.

Названия семи цветов спектра

Таблица 5

При выделении восьми цветов спектра отдельно выделяется Жёлто-зелёный (550-575 нм), уменьшая диапазон зелёного и желтого цветов соответственно.

Восемь цветов спектра

Таблица 6

Для различных целей исследователи могут выделять и другое (существенно большее) число цветов спектра . Однако для практических нужд фотографы, как правило, ограничиваются 6-8 цветами.

Основные и дополнительные цвета

Рис.1. Чёрный и белый, основные и дополнительные цвета

Основные цвета – это три цвета , из которых можно получить любые другие цвета .

Собственно на этом принципе и стоит современная цифровая фотография, использующая в качестве основных цветов красный (R), зелёный (G) и синий (B) см.Таблицу 7.

Дополнительные цвета – это цвета, которые при смешении с основными цветами позволяют получить белый цвет. см.Таблицу 7.

Таблица 7

Основной цвет

Дополнительный цвет

Результирующий цвет

RGB (0 0 225)
Синий/Blue

RGB (255 225 0)
Жёлтый/Yellow

RGB (255 225 225)
Белый/White

RGB (0 225 0)
Зелёный/Green

RGB (255 0 225)
Пурпурный или Фуксия/Magenta

RGB (255 225 225)
Белый/White

RGB (255 0 0)
Красный/Red

RGB (0 225 225)
Голубой/Cyan

RGB (255 225 225)
Белый/White

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β: